A-9

MAIN-GROUP DERIVATIVES OF THE HIGHLY ELECTRONEGATIVE O=IF₄O-GROUP

T. R. G. Syvret and G. J. Schrobilgen

Department of Chemistry, McMaster University, Hamilton, Ont. L8S 4M1 (Canada)

The oxygen-bonded derivatives $FXeOIOF_4$ and $Xe(OIOF_4)_2$, including all isomers derived from cis-trans isomerism associated with the $0=IF_4O$ -group, have been observed as the reaction products in IO_2F_3/XeF_2 solution mixtures by ^{19}F and ^{129}Xe NMR spectroscopy. The ^{129}Xe chemical shifts have been used to establish that the $0=IF_4O$ -group is the most electronegative group known next to fluorine. In addition, the Xe(IV) derivative $F_3XeOIOF_4$, has also been characterized in solution.

Generally, the isolation of $0=\mathrm{IF}_40$ -derivatives may not be accomplished by routes analogous to those used in the syntheses of $-0\mathrm{TeF}_5$ derivatives. For example, direct reaction of HOIOF_4 and XeF_2 may lead to violent detonations which arise from the formation of the shock-sensitive hypofluorite, FOIOF_4 . The formation of FOIOF_4 is circumvented by avoiding the use of fluoride precursors. Thus, it is possible to synthesize and isolate cis,cis- $\mathrm{Xe}(\mathrm{OIOF}_4)_2$ by displacement of volatile HOTeF_5 from $\mathrm{Xe}(\mathrm{OTeF}_5)_2$ by reaction with a stoichiometric amount of the strong protonic acid HOIOF_4 . The solid state low-temperature Raman spectrum as well as the $^{19}\mathrm{F}$ and $^{129}\mathrm{Xe}$ NMR spectra are consistent with the proposed cis,cis-structure.